Attention
The vector search and clustering algorithms in RAFT are being migrated to a new library dedicated to vector search called cuVS. We will continue to support the vector search algorithms in RAFT during this move, but will no longer update them after the RAPIDS 24.06 (June) release. We plan to complete the migration by RAPIDS 24.08 (August) release.
Matrix Ordering#
Argmax#
#include <raft/matrix/argmax.cuh>
namespace raft::matrix
-
template<typename math_t, typename idx_t, typename matrix_idx_t>
void argmax(raft::resources const &handle, raft::device_matrix_view<const math_t, matrix_idx_t, row_major> in, raft::device_vector_view<idx_t, matrix_idx_t> out)# Argmax: find the col idx with maximum value for each row.
- Parameters:
handle – [in] raft handle
in – [in] input matrix of size (n_rows, n_cols)
out – [out] output vector of size n_rows
Argmin#
#include <raft/matrix/argmin.cuh>
namespace raft::matrix
-
template<typename math_t, typename idx_t, typename matrix_idx_t>
void argmin(raft::resources const &handle, raft::device_matrix_view<const math_t, matrix_idx_t, row_major> in, raft::device_vector_view<idx_t, matrix_idx_t> out)# Argmin: find the col idx with minimum value for each row.
- Parameters:
handle – [in] raft handle
in – [in] input matrix of size (n_rows, n_cols)
out – [out] output vector of size n_rows
Select-K#
#include <raft/matrix/select_k.cuh>
namespace raft::matrix
-
enum class SelectAlgo : uint8_t#
Algorithm used to select the k largest neighbors.
Details about how the the select-k algorithms in RAFT work can be found in the paper “Parallel Top-K Algorithms on GPU: A Comprehensive Study and New Methods” https://doi.org/10.1145/3581784.3607062. The kRadix* variants below correspond to the ‘Air Top-k’ algorithm described in the paper, and the kWarp* variants correspond to the ‘GridSelect’ algorithm.
Values:
-
enumerator kAuto#
Automatically pick the select-k algorithm based off the input dimensions and k value
-
enumerator kRadix8bits#
Radix Select using 8 bits per pass
-
enumerator kRadix11bits#
Radix Select using 11 bits per pass, fusing the last filter step
-
enumerator kRadix11bitsExtraPass#
Radix Select using 11 bits per pass, without fusing the last filter step
-
enumerator kWarpAuto#
Automatically switches between the kWarpImmediate and kWarpFiltered algorithms based off of input size
-
enumerator kWarpImmediate#
This version of warp_sort adds every input element into the intermediate sorting buffer, and thus does the sorting step every
Capacity
input elements.This implementation is preferred for very small len values.
-
enumerator kWarpFiltered#
This version of warp_sort compares each input element against the current estimate of k-th value before adding it to the intermediate sorting buffer. This makes the algorithm do less sorting steps for long input sequences at the cost of extra checks on each step.
This implementation is preferred for large len values.
-
enumerator kWarpDistributed#
This version of warp_sort compares each input element against the current estimate of k-th value before adding it to the intermediate sorting buffer. In contrast to
warp_sort_filtered
, it keeps one distributed buffer for all threads in a warp (independently of the subwarp size), which makes its flushing less often.
-
enumerator kWarpDistributedShm#
The same as
warp_sort_distributed
, but keeps the temporary value and index buffers in the given external pointers (normally, a shared memory pointer should be passed in).
-
enumerator kAuto#
-
template<typename T, typename IdxT>
void select_k(raft::resources const &handle, raft::device_matrix_view<const T, int64_t, row_major> in_val, std::optional<raft::device_matrix_view<const IdxT, int64_t, row_major>> in_idx, raft::device_matrix_view<T, int64_t, row_major> out_val, raft::device_matrix_view<IdxT, int64_t, row_major> out_idx, bool select_min, bool sorted = false, SelectAlgo algo = SelectAlgo::kAuto)# Select k smallest or largest key/values from each row in the input data.
If you think of the input data
in_val
as a row-major matrix withlen
columns andbatch_size
rows, then this function selectsk
smallest/largest values in each row and fills in the row-major matrixout_val
of size (batch_size, k).Example usage
using namespace raft; // get a 2D row-major array of values to search through auto in_values = {... input device_matrix_view<const float, int64_t, row_major> ...} // prepare output arrays auto out_extents = make_extents<int64_t>(in_values.extent(0), k); auto out_values = make_device_mdarray<float>(handle, out_extents); auto out_indices = make_device_mdarray<int64_t>(handle, out_extents); // search `k` smallest values in each row matrix::select_k<float, int64_t>( handle, in_values, std::nullopt, out_values.view(), out_indices.view(), true);
- Template Parameters:
T – the type of the keys (what is being compared).
IdxT – the index type (what is being selected together with the keys).
- Parameters:
handle – [in] container of reusable resources
in_val – [in] inputs values [batch_size, len]; these are compared and selected.
in_idx – [in] optional input payload [batch_size, len]; typically, these are indices of the corresponding
in_val
. Ifin_idx
isstd::nullopt
, a contiguous array0...len-1
is implied.out_val – [out] output values [batch_size, k]; the k smallest/largest values from each row of the
in_val
.out_idx – [out] output payload (e.g. indices) [batch_size, k]; the payload selected together with
out_val
.select_min – [in] whether to select k smallest (true) or largest (false) keys.
sorted – [in] whether to make sure selected pairs are sorted by value
algo – [in] the selection algorithm to use
-
inline auto operator<<(std::ostream &os, const SelectAlgo &algo) -> std::ostream&#
Column-wise Sort#
#include <raft/matrix/col_wise_sort.cuh>
namespace raft::matrix
-
template<typename in_t, typename out_t, typename matrix_idx_t, typename sorted_keys_t>
void sort_cols_per_row(raft::resources const &handle, raft::device_matrix_view<const in_t, matrix_idx_t, raft::row_major> in, raft::device_matrix_view<out_t, matrix_idx_t, raft::row_major> out, sorted_keys_t &&sorted_keys_opt)# sort columns within each row of row-major input matrix and return sorted indexes modelled as key-value sort with key being input matrix and value being index of values
- Template Parameters:
in_t – element type of input matrix
out_t – element type of output matrix
matrix_idx_t – integer type for matrix indexing
sorted_keys_t – std::optional<raft::device_matrix_view<in_t, matrix_idx_t, raft::row_major>>
sorted_keys_opt
- Parameters:
handle – [in] raft handle
in – [in] input matrix
out – [out] output value(index) matrix
sorted_keys_opt – [out] std::optional, output matrix for sorted keys (input)
-
template<typename ...Args, typename = std::enable_if_t<sizeof...(Args) == 3>>
void sort_cols_per_row(Args... args)# Overload of
sort_keys_per_row
to help the compiler find the above overload, in case users pass instd::nullopt
for one or both of the optional arguments.Please see above for documentation of
sort_keys_per_row
.